RabbitMQ

Overview

RabbitMQ uses the AMQP 0-9-1 message protocol. The AMQP 0-9-1 Model has the following view of the world: messages are published to exchanges,
which are often compared to post offices or mailboxes. Exchanges then distribute message copies to queues using rules called bindings. Then AMQP
brokers either deliver messages to consumers subscribed to queues, or consumers fetch/pull messages from queues on demand.

"Hello, world" example routing

-

Publisher

Consumes Consumer

When publishing a message, publishers may specify various message attributes (message meta-data). Some of this meta-data may be used by the
broker, however, the rest of it is completely opaque to the broker and is only used by applications that receive the message.

Networks are unreliable and applications may fail to process messages therefore the AMQP model has a notion of message acknowledgements: when a
message is delivered to a consumer the consumer notifies the broker, either automatically or as soon as the application developer chooses to do so. When
message acknowledgements are in use, a broker will only completely remove a message from a queue when it receives a notification for that message (or
group of messages).

In certain situations, for example, when a message cannot be routed, messages may be returned to publishers, dropped, or, if the broker implements an
extension, placed into a so-called "dead letter queue". Publishers choose how to handle situations like this by publishing messages using certain
parameters.

Queues, exchanges and bindings are collectively referred to as AMQP entities.

Using RabbitMQ

Docker-Compose
The following docker-compose file will bring up rabbitMQ service running on the default port of 5672.

This particular version also includes a web management user interface accessible at http://localhost: 15672/

http://localhost:15672/

docker-compose.yml

version: '3.0'
services:

rabbi t nq:
i mage: rabbitng: 3- managenent
ports:
' 5672: 5672
' 15672: 15672
envi ronnent :
RABBI TMQ DEFAULT_USER: rabbi t
RABBI TMQ _DEFAULT_PASS: password
#restart: always
vol unes:
- rabbit-volune:/var/lib/rabbitng

vol unes:
rabbi t - vol ume:
driver: 1local
driver_opts:
type: 'none'
o: 'bind
devi ce: ' $PWD/ rabbi t my’'

Java Samples

Producer - Basic Publish

TestProducer.java

package comirdeto. keystone. service.notification;
i mport comrabbitng. client. ConnectionFactory;

i nport com rabbitng. client.Connection;

i mport comrabbitng.client. Channel;

public class TestProducer {

private final static String NOTIFI CATI ON_QUEUE = "keystone_notifications";

public static void main(String[] argv) throws Exception {

String nessage = "{\n" +
" \"type\": \"notificationType\",\n" +
" \"payl oad\": { \n" +

" \"pame\": \"value\",\n" +
" \"name\": \"value\"\n" +
" \n" +
"
ConnectionFactory factory = new ConnectionFactory();
factory. set Host ("1 ocal host");
factory. set Username("rabbit");
factory. set Passwor d("password");
try (Connection connection = factory. newConnection();
Channel channel = connection.createChannel ()) {
channel . queueDecl ar e(NOTI FI CATI ON_QUEUE, true, fal se, false, null);
channel . basi cPubl i sh("", NOTI FI CATI ON_QUEUE, nul |, nmessage. get Byt es("UTF-8"));

Systemout.printin(" [x] Sent '" + nessage + "'");

Consumer - Basic Consume

TestConsumer.java

package comirdeto. keystone. service.notification;

i nport com rabbitng. client.Channel ;

import comrabbitng.client. Connection;

i mport comrabbitng. client. ConnectionFactory;
i nport com rabbitng.client.DeliverCallback;

public class Test Consumer {
private final static String NOTIFI CATI ON_QUEUE = "keystone_notifications";

public static void main(String[] argv) throws Exception {
ConnectionFactory factory = new ConnectionFactory();
factory. set Host ("l ocal host");
factory. set Username("rabbit");
factory. set Password("password");
Connection connection = factory. newConnection();
Channel channel = connecti on. createChannel ();

channel . queueDecl ar e(NOTI FI CATI ON_QUEUE, true, fal se, false, null);
Systemout.printIn(" [*] Wiiting for messages. To exit press CTRL+C'");

Del i ver Cal | back deliverCallback = (consunmerTag, delivery) -> {
String nmessage = new String(delivery.getBody(), "UTF-8");
Systemout.printin(" [x] Received '" + nmessage + "'");

b
channel . basi cConsune(NOTI FI CATI ON_QUEUE, true, deliverCallback, consumerTag -> { });

Management API

You can install an optional management plugin for RabbitMQ. This will allow you to query RabbitMQ from CLI and REST.

CLI:

See https://ww. rabbitng. conf managenent -cli. htn

REST:

https://pulse.mozilla.org/api/

Sample Rest queries

CET http://1ocal host: 15672/ api / vhost s
CET http://1ocal host: 15672/ api / queues
GET http://local host: 15672/ api / queues/ t est

References

Reference URL

https://www.rabbitmq.com/management-cli.html
https://pulse.mozilla.org/api/

Tutorials

Management CLI

Rest Reference
Postman Collection

Enabling TLS with Java Examples

http://www.rabbitmg.com/getstarted.html

https://ww. rabbi t ng. coml managenent-cli. htni

https://pulse.mozilla.org/api/
RabbitMQ.postman_collection.jsonRabbitMQ.postman_collection.json

https://www.rabbitmg.com/ssl.html#enabling-tls

http://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/management-cli.html
https://pulse.mozilla.org/api/
https://wiki.jmehan.com/download/attachments/11632730/RabbitMQ.postman_collection.json?version=1&modificationDate=1551997282000&api=v2
https://wiki.jmehan.com/download/attachments/11632730/RabbitMQ.postman_collection.json?version=1&modificationDate=1551997282000&api=v2
https://www.rabbitmq.com/ssl.html#enabling-tls

	RabbitMQ

