CMake

Organization

® Directories that contain CMakeLists.txt are the entry point for the build system generator. Subdirectories can be added with the add_subdirecto

ry() and must contain a CMakeL.ists.txt too.
® Scripts are <script>.cmake files that can be executed with the cmake -P <script>.cmake. Not all commands are supported.
® Modules are <script>.cmake files located in the CMAKE_MODULE_PATH. MOdules can be loaded with the include() command.

Commands

® Scripting commands change the state of command processor
O set variables
© change behavior of other commands

® Project commands
O create build targets
© modify build targets

® Command invocations are not expressions.

Variables

set(myvar world)

message(STATUS "hello ${myvar})

Set withe the set() command.

Expand with ${}.

Variables and values are strings.

Lists are ; seperated strings.

CMake variables are not environment variables (unlike Makefile).
Unset variable expands to empty string.

Comments

Use # for single line comments.

Custom Functions/Macros

® Commands can be added with function() or macro().
®* When a new command replaces an existing command, the old one can be accessed with a _ prefix.

function(nmy_command i nput out put)
some comment
set (${output} ... PARENT_SCOPE)
endf unction()

nmy_comrand(f oo bar)

® Variables are scoped to the function unless set with the PARENT_SCOPE.

® Available variables: input, output, ARGC, ARGN, ARGO, ARG1], ...
® Example: ${output} expands to bar.

macr o(ny_conmmand i nput out put)
some comment

endnmacro()

nmy_comrand(foo bar)

® No extra scope with macros.
® Text replacements: ${input}, ${output}, ${ARGC}, ${ARGV}, ${ARGN}, ${ARGO}, ...
* Example: ${output} is replace by bar.

CREATE macros to wrap commands that have output parameters. Otherwise, create functions.

References

https://www.youtube.com/watch?v=bsXLMQ6Wglk

https://www.youtube.com/watch?v=bsXLMQ6WgIk

	CMake

