Dependency Injection or Inversion of Control

® Dependency Injection
® How it Works
© Pass in Dependencies
© Testing
® Dependency Injection Frameworks
© Using Guice
© Using Spring
* References

Dependency Injection

Dependency Injection generally means passing a dependent object as a parameter to a method, rather than having the method
create the dependent object.

What it means in practice is that the method does not have a direct dependency on a particular implementation; any implementation that meets the
requirements can be passed as a parameter.

How it Works

Pass in Dependencies

Here we have a normal class. The only difference is that we allow the dependencies to be passed in.

public class Real BillingService inplements BillingService {
private final CreditCardProcessor processor;
private final TransactionLog transactionLog;

public Real BillingService(CreditCardProcessor processor, TransactionLog transactionLog) {
this. processor = processor;
this.transactionLog = transacti onLog;

}
public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {
try {
ChargeResult result = processor.charge(creditCard, order.getAmunt());
transactionLog. | ogChargeResul t (result);
return result.wasSuccessful ()
? Recei pt. forSuccessful Charge(order.get Amount ())
Recei pt. forDecl i nedCharge(result.getDeclineMessage());
} catch (Unreachabl eException e) {
transacti onLog. | ogConnect Excepti on(e);
return Recei pt.forSystenfail ure(e. get Message());
}
}
}
Testing

Because our dependencies are passed in via the constructor, we can pass in mock implementations for testing.

public class Real BillingServiceTest extends TestCase {

private final PizzaOrder order = new PizzaOrder(100);
private final CreditCard creditCard = new CreditCard("1234", 11, 2010);

private final |nMenoryTransactionLog transactionLog = new | nMenoryTransacti onLog();
private final FakeCreditCardProcessor processor = new FakeCredit CardProcessor();

public void testSuccessful Charge() {
Real Bi | | i ngService billingService
= new Real Bi |l | i ngServi ce(processor, transactionLog);
Recei pt receipt = billingService.chargeOrder(order, creditCard);

assert True(recei pt. hasSuccessful Charge());

assert Equal s(100, receipt.get Amount O Charge());

assert Equal s(creditCard, processor.getCardCO OnlyCharge());
assert Equal s(100, processor.get Ambunt Of Onl yCharge());
assert True(transacti onLog. wasSuccessLogged());

To use our class, we need to create the dependencies and pass them to the constructor.

public static void nain(String[] args) {
Credit CardProcessor processor = new Paypal Credit CardProcessor();
TransactionLog transacti onLog = new Dat abaseTransacti onLog();
Bi I i ngService billingService
= new Real Bi |l | i ngServi ce(processor, transactionLog);

Dependency Injection Frameworks

Two popular dependency injection frameworks are Spring and Google Guice.

Using Guice

The dependency injection pattern leads to code that's modular and testable, and Guice makes it easy to write. To use Guice in our billing example, we first
need to tell it how to map our interfaces to their implementations. This configuration is done in a Guice module, which is any Java class that implements
the Module interface:

public class BillingMdul e extends Abstract Mdul e {
@verride
protected void configure() {
bi nd(Transacti onLog. cl ass) .t o(Dat abaseTr ansacti onLog. cl ass);
bi nd(Cr edi t Car dProcessor. cl ass) .t o(Paypal Credi t CardProcessor. cl ass);
bi nd(BillingService.class).to(Real BillingService.class);

}
}

We add @Inject to RealBillingService's constructor, which directs Guice to use it. Guice will inspect the annotated constructor, and lookup values for each
parameter.

http://code.google.com/p/google-guice/

public class Real BillingService inmplements BillingService {
private final CreditCardProcessor processor;
private final TransactionLog transactionLog;

@ nj ect

public Real BillingService(CreditCardProcessor processor, Transacti onLog transacti onLog) {
this. processor = processor;
this.transactionLog = transacti onLog;

}

public Recei pt chargeOrder(PizzaOrder order, CreditCard creditCard) {
try {
ChargeResult result = processor.charge(creditCard, order.getAnmount());
transactionLog. | ogChargeResul t (result);

return result.wasSuccessful ()
? Recei pt. forSuccessful Charge(order.get Anount ())
Recei pt. forDecl i nedChar ge(result.getDecli neMessage());
} catch (Unreachabl eException e) {
transactionLog. | ogConnect Exception(e);
return Receipt.forSystenfail ure(e. get Message());
}
}
}

Finally, we can put it all together. The Injector can be used to get an instance of any of the bound classes.

public static void main(String[] args) {

Injector injector = Quice.createlnjector(new BillingMdule());
Bill'ingService billingService = injector.getlnstance(BillingService.class);
}
Using Spring

The injection in Spring is either done via setter injection of via construction injection. These classes which are managed by Spring must conform to
the JavaBean standard. In the context of Spring classes are also referred to as beans or as Spring beans.

The Spring core container:

® handles the configuration, generally based on annotations or on an XML file (XMLBeanFactory)
®* manages the selected Java classes via the BeanFactory

The core container uses the so-called bean factory to create new objects. New objects are generally created as Singletons if not specified differently.

The injection in Spring is either done via setter, field or constructor injection. Classes which are managed by Spring DI must conform to the Java bean
standard.

In the context of Spring classes are also referred to as beans or as spring beans.

Example

Define interface

package com conpany. nodel ;

public interface IWiter {
void witer(String s);

}

Create some implementations

package com conpany. nodel ;

public class Witer inplements IWiter {
@verride
public void witer (String s){
Systemout. println(s);

}

package com conpany. nodel ;

public class NiceWiter inplements IWiter {
@verride
public void witer (String s){
Systemout.println("The string is " + s);

}

package com conpany. nodel ;

public class MySpringBeanW t hDependency {
private IWiter witer;

public void setWiter(IWiter witer) {
this.witer = witer;

}

public void run() {
String s = "This is ny test";
witer.witer(s);

The class MySpringBeanWithDependency contains a setter for the actual writer.

We will use the Spring Framework to inject the correct writer into this class.

Using Annotations
Add the @Service annotation the MySpringBeanWithDependency and NiceWriter.
Also define with @Autowired on the setWriter method that the property "writer" will be autowired by Spring.

@Autowired will tell Spring to search for a Spring bean which implements the required interface and place it automatically into the setter.

package testbean;

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springframework. st ereotype. Service;

import witer.IWiter;

@ervi ce
public class MySpringBeanW t hDependency {
private IWiter witer;

@\ut owi red
public void setWiter(IWiter witer) {
this.witer = witer;

}

public void run() {
String s = "This is ny test";
witer.witer(s);

package writer;
i mport org.springfranework. stereotype. Servi ce;

@ervi ce

public class NiceWiter inplements IWiter {
public void witer(String s) {

Systemout.println("The string is

+s);

}

Create the following configuration class:

package com conpany. nodel ;

i mport org.springfranework. cont ext.annot ati on. Conponent Scan;
i mport org.springfranework. context.annotati on. Configuration;

@onfiguration

@onponent Scan(basePackages = { "com conpany. nodel " })
public class Config {

}

Change your application to "only" trigger dependency injection instead of starting a full Spring Boot application.

package com conpany. nodel ;

i nport org.springframework. cont ext.annot ati on. Annot at i onConfi gAppl i cati onCont ext ;

public class Application {

public static void nain(String[] args) {
Annot ati onConf i gAppl i cati onCont ext context = new Annot ati onConfi gAppli cati onContext (Config.cl ass);
M/ Spri ngBeanW t hDependency spri ngBean = cont ext. get Bean(MySpri ngBeanW t hDependency. cl ass) ;
springBean.run();
context.close();

}
}
References
Reference URL
Dependency Injection & Inversion of Control https://www.youtube.com/watch?v=EPv9-cHEmQw

Using dependency injection in Java - Introduction - Tutorial = https://www.vogella.com/tutorials/Dependencylnjection/article.html
Guice - Motivation https://github.com/google/guice/wiki/Motivation

Dependency Injection with the Spring Framework - Tutorial = https://www.vogella.com/tutorials/SpringDependencylnjection/article.html

https://www.youtube.com/watch?v=EPv9-cHEmQw
https://www.vogella.com/tutorials/DependencyInjection/article.html
https://github.com/google/guice/wiki/Motivation
https://www.vogella.com/tutorials/SpringDependencyInjection/article.html

	Dependency Injection or Inversion of Control

