
Machine Learning in Python

High Level Steps
Libraries and Tools
Getting Started

Import a Dataset
Jupyter Shortcuts
Real Example

Import the data
Spit the Data
Train and Do a Prediction
Testing our Model

Model Persistence
Saving a Trained Model
Predictions from a Saved Model
Visualizing Decision Trees

References

High Level Steps
Import the Data
Clean the Data
Split the Data into Training/Test Sets (80% training/20% testing)
Create a Model - select an algorithm
Train the Model
Make Predictions
Evaluate and Improve

Libraries and Tools

Library Purpose

NumPy NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.

Pandas Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool.

MatPlotLib Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

SciKit-
Learn

Simple and efficient tools for predictive data analysis · Accessible to everybody, and reusable in various contexts

Jupyter The Jupyter Notebook App is a server-client application that allows editing and running notebook documents via a web browser.

Anaconda Anaconda is a distribution of the Python and R programming languages for scientific computing, that aims to simplify package
management and deployment.

Getting Started
Install Anaconda

https://www.anaconda.com/products/individual

Start a jupyter notebook

$ jupyter notebook

Create a new Python3 notebook

https://www.anaconda.com/products/individual

Import a Dataset

We can get some sample datasets from kaggle.com - https://www.kaggle.com/

From our Jupyter notebook, we are going to import a downloaded CSV.

import panda as pd
df = pd.read_csv('vgsales.csv')
df

The pd.read function returns a objectDataFrame

https://www.kaggle.com/

Dataframe Functions:

Interesting DataFrame functions:

Method Description Example

shape returns dimensions of dataset df.shape

(16598, 11)

describe returns useful statistics about our data df.describe()

(see above image)

values returns your data

Jupyter Shortcuts

Shortcut Mode Key Description

Add Cell Above Command a

Add Cell Below Command b

Delete Current Cell Command dd

Run current Cell and Stay in Cell Command/Edit <CTRL><ENTER> Run Commands in cell without adding a cell below.

Autocompletion Edit <TAB> Get methods for object

Method Documentation Edit <SHIFT> <TAB> Get information on method

Make Comment Edit <CMD> / Comment/UnComment

Real Example

Import the data

import pandas as pd
df = pd.read_csv('music.csv')
df

Spit the Data

Create input and output data sets. X = input, y = output.

Since we want to predict the type of music based on age and sex, we create our input data as X and our output as y.

import pandas as pd
df = pd.read_csv('music.csv')
X = df.drop(columns="genre")
y = df["genre"]
y

Train and Do a Prediction

import pandas as pd
from sklearn.tree import DecisionTreeClassifier

df = pd.read_csv('music.csv')
X = df.drop(columns="genre")
y = df["genre"]

model = DecisionTreeClassifier()

train model
model.fit(X,y)

predict
21 year old male and 22 year old female
predictions = model.predict([[21,1],[22,0]])
predictions

 In the above example, we used 100% of the data for training and 0 for testing our model.

Testing our Model

import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

df = pd.read_csv('music.csv')
X = df.drop(columns="genre")
y = df["genre"]

#split our data into train and test DataFrames (20% for testing)
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)

model = DecisionTreeClassifier()

train model
model.fit(X_train,y_train)

run predict using test data
predictions = model.predict(X_test)
score = accuracy_score(y_test, predictions)
score

Model Persistence

Saving a Trained Model

import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import joblib

df = pd.read_csv('music.csv')
X = df.drop(columns="genre")
y = df["genre"]

#split our data into train and test DataFrames (20% for testing)
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)

model = DecisionTreeClassifier()

train model
model.fit(X_train,y_train)

run predict using test data
predictions = model.predict(X_test)
score = accuracy_score(y_test, predictions)

#save our model
joblib.dump(model,"music-recomender.joblib")

Predictions from a Saved Model

import joblib

#load our model
model = joblib.load("music-recomender.joblib")

run predict using test data
predictions = model.predict([[20,1],[21,0]])

predictions

Visualizing Decision Trees

import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree

df = pd.read_csv('music.csv')
X = df.drop(columns="genre")
y = df["genre"]

model = DecisionTreeClassifier()

train model
model.fit(X,y)

export graph of data in dot format
tree.export_graphviz(model,out_file='music_recomender.dot',
 feature_names=['age','gender'],
 class_names=sorted(y.unique()),
 label='all',
 rounded=True,
 filled=True)

This will output our .dot file. We just need to pull it into VSCode with dot plugin to visualize it.

References

Reference URL

Python Machine Learning Tutorial (Data Science) https://www.youtube.com/watch?v=7eh4d6sabA0

https://www.youtube.com/watch?v=7eh4d6sabA0

	Machine Learning in Python

