
Adding Prometheus Metrics to a Go Application

Types of Metrics
Counter
Gauge
Histogram
Summary

Coding
Annotations
Important Metrics
Adding Scraping Config to Prometheus
References

Types of Metrics
Prometheus supports 4 types of metrics:

Counter

A is a cumulative metric that represents a single monotonically increasing counter whose value can only increase or be reset to zero on restart. counter
For example, you can use a counter to represent the number of requests served, tasks completed, or errors.

Do not use a counter to expose a value that can decrease. For example, do not use a counter for the number of currently running processes; instead use a
gauge.

Gauge

A is a metric that represents a single numerical value that can arbitrarily go up and down.gauge

Gauges are typically used for measured values like temperatures or current memory usage, but also "counts" that can go up and down, like the number of
concurrent requests.

Histogram

A samples observations (usually things like request durations or response sizes) and counts them in configurable buckets. It also provides a histogram
sum of all observed values.

A histogram with a base metric name of exposes multiple time series during a scrape:<basename>

cumulative counters for the observation buckets, exposed as <basename>_bucket{le="<upper inclusive bound>"}
the of all observed values, exposed as total sum <basename>_sum
the of events that have been observed, exposed as (identical to above)count <basename>_count <basename>_bucket{le="+Inf"}

Summary

Similar to a , a samples observations (usually things like request durations and response sizes). While it also provides a total count of histogram summary
observations and a sum of all observed values, it calculates configurable quantiles over a sliding time window.

A summary with a base metric name of exposes multiple time series during a scrape:<basename>

streaming (0 1) of observed events, exposed as -quantiles <basename>{quantile="<>"}
the of all observed values, exposed as total sum <basename>_sum
the of events that have been observed, exposed as count <basename>_count

Coding
Libraries

go get github.com/prometheus/client_golang/prometheus
go get github.com/prometheus/client_golang/prometheus/promauto
go get github.com/prometheus/client_golang/prometheus/promhttp

Sample Code

package main

import (
 "net/http"
 "time"

 "github.com/prometheus/client_golang/prometheus"
 "github.com/prometheus/client_golang/prometheus/promauto"
 "github.com/prometheus/client_golang/prometheus/promhttp"
)

func recordMetrics() {
 go func() {
 for {
 opsProcessed.Inc()
 time.Sleep(2 * time.Second)
 }
 }()
}

var (
 opsProcessed = promauto.NewCounter(prometheus.CounterOpts{
 Name: "myapp_processed_ops_total",
 Help: "The total number of processed events",
 })
)

func main() {
 recordMetrics()

 http.Handle("/metrics", promhttp.Handler())
 http.ListenAndServe(":2112", nil)
}

Access the Metric

curl http://localhost:2112/metrics

Annotations
Annotating a Service

apiVersion: v1
kind: Service
metadata:
 name: kafka-azure-sink
 labels:
 app: kafka-azure-sink
 annotations:
 prometheus.io/scrape: "true"
 prometheus.io/port: "8080"
 prometheus.io/path: "/metrics"
spec:
 selector:
 app: kafka-azure-sink
 ports:
 - name: http
 port: 8080
 targetPort: 8080

Annotating a Pod

apiVersion: apps/v1
kind: Deployment
metadata:
 name: kafka-azure-sink
 labels:
 app: kafka-azure-sink
spec:
 replicas: 1
 selector:
 matchLabels:
 app: kafka-azure-sink
 template:
 metadata:
 labels:
 app: kafka-azure-sink
 annotations:
 prometheus.io/scrape: "true"
 prometheus.io/port: "8080"
 prometheus.io/path: "/metrics"
 spec:
 containers:
...

Important Metrics

Name Description

go_memstats_sys_bytes Total Used Memory

go_memstats_heap_sys_bytes Memory In Heap

go_memstats_mcache_sys_bytes Meomory In Off Heap

go_memstats_stack_inuse_bytes Memory In Stack

go_goroutines Go Routines

Adding Scraping Config to Prometheus

Values.yaml

grafana:
 defaultDashboardsTimezone: America/Toronto
 adminPassword: admin

prometheus-node-exporter:
 hostRootFsMount:
 enabled: false

prometheus:
 prometheusSpec:
 additionalScrapeConfigs:
 - job_name: kafka-azure-sink
 static_configs:
 - targets: ['kafka-azure-sink:8080']
 - job_name: kafka-stream-operator
 static_configs:
 - targets: ['kafka-stream-operator:8080']

References

Reference URL

INSTRUMENTING A GO APPLICATION FOR PROMETHEUS https://prometheus.io/docs/guides/go-application/

https://prometheus.io/docs/guides/go-application/

	Adding Prometheus Metrics to a Go Application

