Adding Prometheus Metrics to a Go Application

® Types of Metrics
© Counter
© Gauge
© Histogram
© Summary
Coding
Annotations
Important Metrics
Adding Scraping Config to Prometheus
References

Types of Metrics

Prometheus supports 4 types of metrics:

Counter

A counter is a cumulative metric that represents a single monotonically increasing counter whose value can only increase or be reset to zero on restart.
For example, you can use a counter to represent the number of requests served, tasks completed, or errors.

Do not use a counter to expose a value that can decrease. For example, do not use a counter for the number of currently running processes; instead use a
gauge.

Gauge

A gauge is a metric that represents a single numerical value that can arbitrarily go up and down.

Gauges are typically used for measured values like temperatures or current memory usage, but also "counts" that can go up and down, like the number of
concurrent requests.

Histogram

A histogram samples observations (usually things like request durations or response sizes) and counts them in configurable buckets. It also provides a
sum of all observed values.

A histogram with a base metric name of <basenane> exposes multiple time series during a scrape:
® cumulative counters for the observation buckets, exposed as <basenane>_bucket { | e="<upper i ncl usive bound>"}

® the total sum of all observed values, exposed as <basenane>_sum
® the count of events that have been observed, exposed as <basenane>_count (identical to <basename>_bucket {| e="+I nf "} above)

Summary

Similar to a histogram, a summary samples observations (usually things like request durations and response sizes). While it also provides a total count of
observations and a sum of all observed values, it calculates configurable quantiles over a sliding time window.

A summary with a base metric name of <basenane> exposes multiple time series during a scrape:
® streaming -quantiles (0 1) of observed events, exposed as <basename>{ quanti | e="<>"

® the total sum of all observed values, exposed as <basenane>_sum
® the count of events that have been observed, exposed as <basenanme>_count

Coding

Libraries

go get github. conl pronetheus/client_gol ang/ pronet heus
go get github. conl promet heus/client_gol ang/ pronet heus/ pr onaut o
go get github. conl pronetheus/client_gol ang/ pronet heus/ pronhttp

Sample Code

package main

inport (
"net/http"
“tinme"

"gi t hub. cont pr onet heus/ cl i ent _gol ang/ pr onet heus"
" gi t hub. cont pr onet heus/ cl i ent _gol ang/ pr onet heus/ pr omaut 0"
"gi t hub. conf pronet heus/ cl i ent _gol ang/ pr onet heus/ pronht t p*

)
func recordMetrics() {
go func() {
for {
opsProcessed. | nc()
tine.Sleep(2 * tinme.Second)
}
O
}
var (

opsProcessed = pronaut 0. NewCount er (pr onet heus. Count er Opt s{
Nane: "myapp_processed_ops_total ",
Hel p: "The total nunber of processed events"”,

b
)

func main() {
recordMetrics()

http. Handl e("/netrics", pronhttp.Handl er())
http. Li stenAndServe(":2112", nil)

Access the Metric

curl http://1ocal host: 2112/ netrics

Annotations

Annotating a Service

api Version: vl
ki nd: Service
met adat a:
name: kafka-azure-sink
| abel s:
app: kaf ka-azure-sink
annot ati ons:
pronet heus. i o/ scrape: "true"
pronet heus.io/ port: "8080"
pronet heus.i o/ path: "/netrics"

spec:
sel ector:
app: kaf ka-azure-sink
ports:
- nane: http
port: 8080

targetPort: 8080

Annotating a Pod

api Version: apps/vl
ki nd: Depl oynent

met adat a:
name: kafka-azure-sink
| abel s:
app: kaf ka-azure-sink
spec:
replicas: 1
sel ector:

mat chLabel s:
app: kaf ka-azure-sink
tenpl ate:
net adat a:
| abel s:
app: kafka-azure-sink
annot ati ons:
pronet heus. i o/ scrape: "true"
pronet heus. i o/ port: "8080"
pronet heus.i o/ path: "/netrics"
spec:
cont ai ners:

Important Metrics

Name Description
go_memestats_sys_bytes Total Used Memory
go_memstats_heap_sys_bytes Memory In Heap

go_memstats_mcache_sys_bytes = Meomory In Off Heap
go_memestats_stack_inuse_bytes = Memory In Stack

go_goroutines Go Routines

Adding Scraping Config to Prometheus

Values.yaml

gr af ana:
def aul t Dashboar dsTi nezone: Anerical/ Toronto
adm nPassword: admin

pr onet heus- node- exporter:
host Root FsMount :
enabl ed: false

pr onet heus:
pronet heusSpec:
addi ti onal ScrapeConfi gs:
- job_nane: kafka-azure-sink
static_configs:
- targets: ['kafka-azure-sink:8080']
- job_nane: kafka-stream operator
static_configs:
- targets: ['kafka-stream operator:8080']

References

Reference URL

INSTRUMENTING A GO APPLICATION FOR PROMETHEUS | https://prometheus.io/docs/guides/go-application/

https://prometheus.io/docs/guides/go-application/

	Adding Prometheus Metrics to a Go Application

