Go Signals

Go by Example https://gobyexample.com/signals

package main

import (
"t
nogh
"os/signal"
"syscall"

)
func main() {

Go signal notification works by sending os.Signal values sigs := make(chan os.Signal, 1)
on a channel. We'll create a channel to receive these
notifications. Note that this channel should be buffered.

signal.Notify registers the given channel to receive signal.Notify(sigs, syscall.SIGINT, syscall.SIGTERM)
notifications of the specified signals.

We could receive from sigs here in the main function, but done := make(chan bool, 1)
let’s see how this could also be done in a separate

goroutine, to demonstrate a more realistic scenario of

graceful shutdown.

This goroutine executes a blocking receive for signals. go func() {
‘When it gets one it’ll print it out and then notify the
program that it can finish.

sig := <-sigs
fmt.Println()
fmt.Println(sig)
done <— true

1 10]
The program will wait here until it gets the expected signal fmt.Println("awaiting signal")
(as indicated by the goroutine above sending a value on <-done 1
done) and then exit. fmt.Println("exiting")
' }
‘When we run this program it will block waiting for a $ go run signals.go

signal. By typing ctr1-C (which the terminal shows as ~C) @%@ iting signal
we can send a SIGINT signal, causing the program to print

interrupt and then exit. interrupt

exiting

package main

inport (
"t
"os
"os/signal"
"syscal I "

func main() {
sigs := make(chan os. Signal, 1)
signal . Notify(sigs, syscall.SIANT, syscall.SlIGITERM
done : = nake(chan bool, 1)
go func() {
sig := <-sigs
fm.Println()

fm.Println(sig)
done <- true

30

fm.Println("awaiting signal")
<-done
fm.Println("exiting")

Another Example:


https://gobyexample.com/signals

package main

inport (

)

"f e
"os
"os/signal"
"syscal I "
"tinme"

func main() {

osSi gnal Channel := make(chan os. Signal, 1)

signal . Noti fy(osSi gnal Channel, syscall.SI A NT, syscall.SlI GTERVM

nsgChannel := nake(chan string)
go func() {
for {
//wait on a nessage froma channel
sel ect {
case signal := <-0sSignal Channel :

fmt.Println(signal)

//call shutdown
msgChannel <- "shutdown"

case nsg : = <-msgChannel :
fm.Println("s: Received nessage:", nsg)
if meg == "shutdown" {

fm.Printin("s: Ceaning up")

/1sl eep
time. Sl eep(tinme.Second * 30)

fmt.Println()
fm.Println("s: Shutting down")

//notify shutdown
msgChannel <- "shutdown"

return

} else {
fm.Println("s: Received nessage:", nsg,

}

10O
tine. Sleep(tine.Second * 1)

// sens bogus nessage
fm.Println("m Sending bogus nmessage")
nsgChannel <- "bogus"

tine. Sleep(tine.Second * 5)

/I send shut down
fm.Println("m Sending shutdown nmessage")
nsgChannel <- "shutdown"

fm.Println("m Waiting for response nessage")
response : = <-nsgChannel

fm.Println("m Response: ", response)
fmt.PrintIn("m Exiting")

ignoring...



Another Example

package nmain

i mport (
"fntt
"os
"os/signal"
"syscal I "
"tine"

)
func main() {

//create channel that can receive OS signals
ch : = make(chan os. Signal)

/1 Submt channel to the notify signa
signal . Notify(ch, syscall.SIGTERM syscall.SlI G NT)

//a go function to nonitor signals in the background

go func() {
for sig := range ch {
switch sig {
case syscal | . SI GTERM
fmt.Println("sigtermreceived')
os. Exit (0)
case syscall.SI A NT
fmt.Println("sigint received')
0S. Exi t (0)
}
}
O

tine.Sleep(tine.Mnute)



	Go Signals

